Home » date » 2007 » Nov » 15 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 03:48:50 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2.htm/, Retrieved Thu, 15 Nov 2007 11:45:45 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
140 373 132 371 117 354 114 357 113 363 110 364 107 363 103 358 98 357 98 357 137 380 148 378 147 376 139 380 130 379 128 384 127 392 123 394 118 392 114 396 108 392 111 396 151 419 159 421 158 420 148 418 138 410 137 418 136 426 133 428 126 430 120 424 114 423 116 427 153 441 162 449 161 452 149 462 139 455 135 461 130 461 127 463 122 462 117 456 112 455 113 456 149 472 157 472 157 471 147 465 137 459 132 465 125 468 123 467 117 463 114 460 111 462 112 461 144 476 150 476 149 471 134 453 123 443 116 442 117 444 111 438 105 427 102 424 95 416 93 406 124 431 130 434 124 418
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
-25[t] = + 25.7095903042373 + 0.3341097741355`25 `[t] -1.35075440129733M1[t] -10.0278612159084M2[t] -17.6287970771281M3[t] -22.2951234107307M4[t] -25.6281164110000M5[t] -28.6242820943263M6[t] -32.5071367509352M7[t] -35.1119548161657M8[t] -39.2175493221984M9[t] -37.7690117474795M10[t] -7.89129973075869M11[t] -0.503834316673765t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)25.70959030423739.1608252.80650.0067760.003388
`25 `0.33410977413550.02337914.290800
M1-1.350754401297332.549443-0.52980.5982230.299111
M2-10.02786121590842.651237-3.78230.0003650.000183
M3-17.62879707712812.657874-6.632700
M4-22.29512341073072.650749-8.410900
M5-25.62811641100002.645881-9.68600
M6-28.62428209432632.645331-10.820700
M7-32.50713675093522.649651-12.268500
M8-35.11195481616572.658738-13.206200
M9-39.21754932219842.668726-14.695200
M10-37.76901174747952.674232-14.123300
M11-7.891299730758692.638944-2.99030.0040610.00203
t-0.5038343166737650.041013-12.284600


Multiple Linear Regression - Regression Statistics
Multiple R0.971946355203395
R-squared0.944679717393163
Adjusted R-squared0.932490502581487
F-TEST (value)77.5012773167527
F-TEST (DF numerator)13
F-TEST (DF denominator)59
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.57053009318048
Sum Squared Residuals1232.49497462744


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1140148.477947338808-8.47794733880753
2132138.628786659252-6.62878665925186
3117124.844150321055-7.84415032105496
4114120.676318993185-6.67631899318502
5113118.844150321055-5.84415032105493
6110115.678260095190-5.67826009519042
7107110.957461347772-3.95746134777218
8103106.178260095190-3.17826009519043
998101.234721498349-3.23472149834853
1098102.179424756394-4.17942475639371
11137139.237827261557-2.23782726155721
12148145.9570731273712.04292687262891
13147143.4342648611293.56573513887098
14139135.5897628263863.41023717361382
15130127.1508828743572.84911712564274
16128123.6512710947584.34872890524165
17127122.4873219708994.51267802910073
18123119.6555415191703.34445848082972
19118114.6006329976173.39936700238348
20114112.8284197122541.17158028774573
21108106.8825517930061.11744820699416
22111109.1636941475931.83630585240698
23151146.2220966527574.77790334724349
24159154.2777816151124.72221838488756
25158152.0890831230065.91091687699415
26148142.239922443455.76007755655
27138131.4622740724736.53772592752741
28137128.9649916152808.03500838471982
29136127.8010424914218.1989575085789
30133124.9692620396928.03073796030791
31126121.2507926146804.74920738531966
32120116.1374815879633.86251841203691
33114111.1939429911212.80605700887882
34116113.4750853457082.52491465429166
35153147.5264998836525.47350011634766
36162157.5868434908214.41315650917874
37161156.7345840952574.26541590474333
38149150.894740705327-1.89474070532682
39139140.451202108485-1.45120210848491
40135137.285700103021-2.28570010302149
41130133.448872786078-3.44887278607842
42127130.617092334349-3.61709233434941
43122125.896293586931-3.89629358693117
44117120.782982560214-3.78298256021391
45112115.839443963372-3.839443963372
46113117.118256995553-4.11825699555265
47149151.837891081768-2.83789108176766
48157159.225356495853-2.22535649585258
49157157.036658003746-0.0366580037459927
50147145.8510582276481.14894177235185
51137135.7416294049421.25837059505827
52132132.576127399478-0.576127399478315
53125129.741629404942-4.74162940494174
54123125.907519630806-2.90751963080624
55117120.184391560981-3.18439156098148
56114116.073409856671-2.07340985667074
57111112.132200582235-1.13220058223531
58112112.742794066145-0.742794066144982
59144147.128318378224-3.12831837822448
60150154.515783792309-4.51578379230941
61149150.990646203661-1.99064620366081
62134135.795729137937-1.79572913793698
63123124.349861218689-1.34986121868855
64116118.845590794277-2.84559079427664
65117115.6769830256051.32301697439545
66111110.1723243807920.82767561920844
67105102.1104278920182.8895721079817
6810297.99944618770754.00055381229244
699590.71713917191714.28286082808286
709388.32074468860734.6792553113927
71124126.047366742042-2.04736674204180
72130134.437161478533-4.43716147853323
73124127.236816374394-3.23681637439413
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/1xpbd1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/1xpbd1195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/2pbib1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/2pbib1195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/3f4rt1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/3f4rt1195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/4bmy91195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/4bmy91195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/54wta1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/54wta1195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/6mogd1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/6mogd1195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/7zgc71195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/7zgc71195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/8zu9f1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/8zu9f1195123725.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/91qxn1195123725.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195123535jujax97kt2nu1d2/91qxn1195123725.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by