Home » date » 2007 » Nov » 15 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 14 Nov 2007 16:25:11 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i.htm/, Retrieved Thu, 15 Nov 2007 00:19:52 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
128 0 123 0 118 0 112 0 105 0 102 0 131 0 149 0 145 0 132 0 122 0 119 0 116 0 111 0 104 0 100 0 93 0 91 0 119 0 139 0 134 0 124 0 113 0 109 0 109 0 106 0 101 0 98 0 93 0 91 0 122 0 139 0 140 1 132 1 117 1 114 1 113 1 110 1 107 1 103 1 98 1 98 1 137 1 148 1 147 1 139 1 130 1 128 1 127 1 123 1 118 1 114 1 108 1 111 1 151 1 159 1 158 1 148 1 138 1 137 1 136 1 133 1 126 1 120 1 114 1 116 1 153 1 162 1 161 1 149 0 139 0 135 0 130 0 127 0 122 0 117 0 112 0 113 0 149 0 157 0 157 0 147 0 137 0 132 0 125 0 123 0 117 0 114 0 111 0 112 0 144 0 150 0 149 0 134 0 123 0 116 0 117 0 111 0 105 0 102 0 95 0 93 0 124 0 130 0 124 0 115 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 121.124348203940 + 7.00173812282735x[t] -1.12492757821549M1[t] -4.90270535599331M2[t] -10.3471498004377M3[t] -14.5693720226600M4[t] -20.2360386893266M5[t] -20.4582609115488M6[t] + 13.2084057551178M7[t] + 24.6528501995622M8[t] + 21.8748792970259M9[t] + 12.0972946440067M10[t] + 3.62500000000001M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)121.1243482039403.50687834.539100
x7.001738122827351.9799443.53630.0006350.000317
M1-1.124927578215494.711203-0.23880.8118040.405902
M2-4.902705355993314.711203-1.04060.3007370.150368
M3-10.34714980043774.711203-2.19630.0305580.015279
M4-14.56937202266004.711203-3.09250.002620.00131
M5-20.23603868932664.711203-4.29534.3e-052.1e-05
M6-20.45826091154884.711203-4.34253.6e-051.8e-05
M713.20840575511784.7112032.80360.0061510.003076
M824.65285019956224.7112035.23281e-061e-06
M921.87487929702594.7124874.64191.1e-056e-06
M1012.09729464400674.7112032.56780.0118290.005915
M113.625000000000014.8470440.74790.456420.22821


Multiple Linear Regression - Regression Statistics
Multiple R0.859946975859105
R-squared0.73950880128922
Adjusted R-squared0.705897033713636
F-TEST (value)22.0014850342592
F-TEST (DF numerator)12
F-TEST (DF denominator)93
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9.69408879906772
Sum Squared Residuals8739.70826091156


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1128119.9994206257248.00057937427622
2123116.2216428479466.77835715205356
3118110.7771984035027.22280159649805
4112106.5549761812805.44502381872025
5105100.8883095146134.11169048538683
6102100.6660872923911.33391270760911
7131134.332753959058-3.33275395905761
8149145.7771984035023.22280159649796
9145142.9992275009662.00077249903436
10132133.221642847946-1.22164284794641
11122124.749348203940-2.7493482039397
12119121.124348203940-2.12434820393975
13116119.999420625724-3.99942062572427
14111116.221642847946-5.22164284794644
15104110.777198403502-6.777198403502
16100106.554976181280-6.55497618127978
1793100.888309514613-7.8883095146131
1891100.666087292391-9.66608729239089
19119134.332753959058-15.3327539590575
20139145.777198403502-6.77719840350199
21134142.999227500966-8.99922750096562
22124133.221642847946-9.22164284794645
23113124.749348203940-11.7493482039398
24109121.124348203940-12.1243482039397
25109119.999420625724-10.9994206257243
26106116.221642847946-10.2216428479464
27101110.777198403502-9.777198403502
2898106.554976181280-8.55497618127978
2993100.888309514613-7.8883095146131
3091100.666087292391-9.66608729239089
31122134.332753959058-12.3327539590575
32139145.777198403502-6.77719840350199
33140150.000965623793-10.0009656237930
34132140.223380970774-8.22338097077379
35117131.751086326767-14.7510863267671
36114128.126086326767-14.1260863267671
37113127.001158748552-14.0011587485516
38110123.223380970774-13.2233809707738
39107117.778936526329-10.7789365263293
40103113.556714304107-10.5567143041071
4198107.890047637440-9.89004763744044
4298107.667825415218-9.66782541521823
43137141.334492081885-4.33449208188489
44148152.778936526329-4.77893652632933
45147150.000965623793-3.00096562379297
46139140.223380970774-1.22338097077378
47130131.751086326767-1.75108632676710
48128128.126086326767-0.126086326767089
49127127.001158748552-0.00115874855161735
50123123.223380970774-0.223380970773783
51118117.7789365263290.221063473670653
52114113.5567143041070.443285695892881
53108107.8900476374400.109952362559556
54111107.6678254152183.33217458478177
55151141.3344920818859.66550791811512
56159152.7789365263296.22106347367067
57158150.0009656237937.99903437620703
58148140.2233809707747.77661902922622
59138131.7510863267676.2489136732329
60137128.1260863267678.87391367323291
61136127.0011587485528.99884125144838
62133123.2233809707749.77661902922622
63126117.7789365263298.22106347367065
64120113.5567143041076.44328569589288
65114107.8900476374406.10995236255956
66116107.6678254152188.33217458478177
67153141.33449208188511.6655079181151
68162152.7789365263299.22106347367067
69161150.00096562379310.9990343762070
70149133.22164284794615.7783571520535
71139124.74934820394014.2506517960602
72135121.12434820394013.8756517960603
73130119.99942062572410.0005793742757
74127116.22164284794610.7783571520536
75122110.77719840350211.222801596498
76117106.55497618128010.4450238187202
77112100.88830951461311.1116904853869
78113100.66608729239112.3339127076091
79149134.33275395905814.6672460409424
80157145.77719840350211.222801596498
81157142.99922750096614.0007724990344
82147133.22164284794613.7783571520535
83137124.74934820394012.2506517960602
84132121.12434820394010.8756517960603
85125119.9994206257245.00057937427573
86123116.2216428479466.77835715205356
87117110.7771984035026.222801596498
88114106.5549761812807.44502381872022
89111100.88830951461310.1116904853869
90112100.66608729239111.3339127076091
91144134.3327539590589.66724604094245
92150145.7771984035024.222801596498
93149142.9992275009666.00077249903437
94134133.2216428479460.778357152053557
95123124.749348203940-1.74934820393975
96116121.124348203940-5.12434820393974
97117119.999420625724-2.99942062572427
98111116.221642847946-5.22164284794644
99105110.777198403502-5.77719840350200
100102106.554976181280-4.55497618127978
10195100.888309514613-5.8883095146131
10293100.666087292391-7.6660872923909
103124134.332753959058-10.3327539590575
104130145.777198403502-15.777198403502
105124142.999227500966-18.9992275009656
106115133.221642847946-18.2216428479464
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/1gq921195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/1gq921195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/2r8ck1195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/2r8ck1195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/3xy481195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/3xy481195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/4q64b1195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/4q64b1195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/585ez1195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/585ez1195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/67nga1195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/67nga1195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/7dbr41195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/7dbr41195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/8m8l41195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/8m8l41195082702.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/90rxw1195082702.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195082382yufoomn3ghzbg8i/90rxw1195082702.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by