Home » date » 2007 » Dec » 21 » attachments

Paper - Regress.- Invoer België - Start euro

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 21 Dec 2007 07:32:45 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx.htm/, Retrieved Fri, 21 Dec 2007 15:15:25 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
7272.2 0 6680.1 0 8427.6 0 8752.8 0 7952.7 0 8694.3 0 7787 0 8474.2 0 9154.7 0 8557.2 0 7951.1 0 9156.7 0 7865.7 0 7337.4 0 9131.7 0 8814.6 0 8598.8 0 8439.6 0 7451.8 0 8016.2 0 9544.1 0 8270.7 0 8102.2 0 9369 0 7657.7 0 7816.6 0 9391.3 0 9445.4 0 9533.1 0 10068.7 0 8955.5 0 10423.9 0 11617.2 0 9391.1 0 10872 0 10230.4 0 9221 0 9428.6 0 10934.5 0 10986 0 11724.6 0 11180.9 0 11163.2 0 11240.9 0 12107.1 0 10762.3 0 11340.4 0 11266.8 0 9542.7 0 9227.7 0 10571.9 0 10774.4 0 10392.8 0 9920.2 0 9884.9 1 10174.5 1 11395.4 1 10760.2 1 10570.1 1 10536 1 9902.6 1 8889 1 10837.3 1 11624.1 1 10509 1 10984.9 1 10649.1 1 10855.7 1 11677.4 1 10760.2 1 10046.2 1 10772.8 1 9987.7 1 8638.7 1 11063.7 1 11855.7 1 10684.5 1 11337.4 1 10478 1 11123.9 1 12909.3 1 11339.9 1 10462.2 1 12733.5 1 10519.2 1 10414.9 1 12476.8 1 12384.6 1 12266.7 1 12919.9 1 11497.3 1 12142 1 13919.4 1 12656.8 1 12034.1 1 13199.7 1 10881.3 1 11301.2 1 13643.9 1 12517 1 13981.1 1 14275.7 1 13435 1 13565.7 1 16216.3 1 12970 1 14079.9 1 14235 1 12213.4 1 12581 1 14130.4 1 14210.8 1 14378.5 1 13142.8 1 13714.7 1 13621.9 1 15379.8 1 13306.3 1 14391.2 1 14909.9 1 14552.7 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Invoer[t] = + 7993.7491103842 -1443.30297607594X[t] -1412.68647481161M1[t] -1869.97019529526M2[t] -108.962205526499M3[t] -101.714215757733M4[t] -304.456225988966M5[t] -278.578236220198M6[t] -797.419948843835M7[t] -403.561959075068M8[t] + 956.236030693697M9[t] -626.745979537535M10[t] -587.657989768767M11[t] + 68.3820102312329t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)7993.7491103842220.32722136.281300
X-1443.30297607594216.337578-6.671500
M1-1412.68647481161261.758411-5.396900
M2-1869.97019529526268.295016-6.969800
M3-108.962205526499268.17348-0.40630.6853250.342662
M4-101.714215757733268.087192-0.37940.7051370.352569
M5-304.456225988966268.036186-1.13590.2585460.129273
M6-278.578236220198268.020482-1.03940.3009660.150483
M7-797.419948843835268.235931-2.97280.0036460.001823
M8-403.561959075068268.077119-1.50540.1351690.067584
M9956.236030693697267.9535333.56870.0005390.000269
M10-626.745979537535267.865223-2.33980.0211510.010575
M11-587.657989768767267.812223-2.19430.0303770.015188
t68.38201023123293.07630522.228600


Multiple Linear Regression - Regression Statistics
Multiple R0.960813246834253
R-squared0.92316209529218
Adjusted R-squared0.91382664892581
F-TEST (value)98.887836645681
F-TEST (DF numerator)13
F-TEST (DF denominator)107
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation598.806826937201
Sum Squared Residuals38366948.9105661


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
17272.26649.44464580379622.755354196211
26680.16260.5429355514419.557064448606
38427.68089.9329355514337.667064448595
48752.88165.5629355514587.237064448597
57952.78031.2029355514-78.5029355514001
68694.38125.4629355514568.837064448604
777877675.00323315899111.996766841012
88474.28137.24323315899336.956766841012
99154.79565.4232331590-410.723233158992
108557.28050.82323315899506.376766841009
117951.18158.29323315899-207.193233158988
129156.78814.33323315899342.366766841013
137865.77470.02876857861395.671231421387
147337.47081.1270583262256.272941673806
159131.78910.51705832619221.182941673811
168814.68986.14705832619-171.54705832619
178598.88851.78705832619-252.987058326191
188439.68946.04705832619-506.447058326191
197451.88495.58735593379-1043.78735593379
208016.28957.82735593378-941.627355933786
219544.110386.0073559338-841.907355933784
228270.78871.40735593378-600.707355933784
238102.28978.87735593379-876.677355933786
2493699634.91735593379-265.917355933785
257657.78290.6128913534-632.912891353406
267816.67901.71118110099-85.1111811009849
279391.39731.10118110098-339.801181100985
289445.49806.73118110098-361.331181100985
299533.19672.37118110099-139.271181100985
3010068.79766.63118110099302.068818899015
318955.59316.17147870858-360.67147870858
3210423.99778.41147870858645.48852129142
3311617.211206.5914787086410.608521291422
349391.19691.99147870858-300.891478708579
35108729799.461478708581072.53852129142
3610230.410455.5014787086-225.101478708580
3792219111.1970141282109.802985871800
389428.68722.29530387578706.304696124221
3910934.510551.6853038758382.814696124222
401098610627.3153038758358.684696124221
4111724.610492.95530387581231.64469612422
4211180.910587.2153038758593.68469612422
4311163.210136.75560148341026.44439851663
4411240.910598.9956014834641.904398516626
4512107.112027.175601483479.9243985166273
4610762.310512.5756014834249.724398516626
4711340.410620.0456014834720.354398516625
4811266.811276.0856014834-9.28560148337375
499542.79931.781136903-389.081136902994
509227.79542.87942665057-315.179426650573
5110571.911372.2694266506-800.369426650573
5210774.411447.8994266506-673.499426650573
5310392.811313.5394266506-920.739426650575
549920.211407.7994266506-1487.59942665057
559884.99514.03674818223370.863251817773
5610174.59976.27674818223198.223251817774
5711395.411404.4567481822-9.05674818222588
5810760.29889.85674818223870.343251817775
5910570.19997.32674818223572.773251817774
601053610653.3667481822-117.366748182226
619902.69309.06228360185593.537716398154
6288898920.16057334943-31.160573349427
6310837.310749.550573349487.7494266505743
6411624.110825.1805733494798.919426650575
651050910690.8205733494-181.820573349426
6610984.910785.0805733494199.819426650573
6710649.110334.6208709570314.47912904298
6810855.710796.860870957058.83912904298
6911677.412225.0408709570-547.640870957020
7010760.210710.440870957049.7591290429804
7110046.210817.9108709570-771.71087095702
7210772.811473.9508709570-701.150870957021
739987.710129.6464063766-141.946406376641
748638.79740.74469612422-1102.04469612422
7511063.711570.1346961242-506.434696124219
7611855.711645.7646961242209.935303875781
7710684.511511.4046961242-826.90469612422
7811337.411605.6646961242-268.264696124222
791047811155.2049937318-677.204993731815
8011123.911617.4449937318-493.544993731816
8112909.313045.6249937318-136.324993731815
8211339.911531.0249937318-191.124993731815
8310462.211638.4949937318-1176.29499373181
8412733.512294.5349937318438.965006268185
8510519.210950.2305291514-431.030529151435
8610414.910561.3288188990-146.428818899016
8712476.812390.718818899086.0811811009855
8812384.612466.3488188990-81.7488188990137
8912266.712331.9888188990-65.288818899014
9012919.912426.2488188990493.651181100984
9111497.311975.7891165066-478.489116506611
921214212438.0291165066-296.029116506610
9313919.413866.209116506653.1908834933911
9412656.812351.6091165066305.190883493390
9512034.112459.0791165066-424.979116506609
9613199.713115.119116506684.5808834933917
9710881.311770.8146519262-889.51465192623
9811301.211381.9129416738-80.7129416738088
9913643.913211.3029416738432.597058326191
1001251713286.9329416738-769.932941673809
10113981.113152.5729416738828.527058326191
10214275.713246.83294167381028.86705832619
1031343512796.3732392814638.626760718596
10413565.713258.6132392814307.086760718597
10516216.314686.79323928141529.50676071860
1061297013172.1932392814-202.193239281403
10714079.913279.6632392814800.236760718596
1081423513935.7032392814299.296760718597
10912213.412591.3987747010-377.998774701024
1101258112202.4970644486378.502935551396
11114130.414031.887064448698.5129355513976
11214210.814107.5170644486103.282935551397
11314378.513973.1570644486405.342935551397
11413142.814067.4170644486-924.617064448604
11513714.713616.957362056297.7426379438026
11613621.914079.1973620562-457.297362056198
11715379.815507.3773620562-127.577362056198
11813306.313992.7773620562-686.477362056198
11914391.214100.2473620562290.952637943803
12014909.914756.2873620562153.612637943802
12114552.713411.98289747581140.71710252418
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/190h11198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/190h11198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/2p0px1198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/2p0px1198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/3fsey1198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/3fsey1198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/4mpku1198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/4mpku1198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/5xnko1198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/5xnko1198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/60mn11198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/60mn11198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/77yi21198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/77yi21198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/8emvd1198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/8emvd1198247559.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/99e181198247559.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Dec/21/t119824651265f2zur9frgtbcx/99e181198247559.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by